
In order to find the dependence of nonlinearity parameter for water-saturated andesite on 
effective pressure on the basis of relationship (1.8) the following data were used: K2 = 
2.62 GPa, K I = 48.8 GPa, P2/Pl = 0.4, ~2 = 4. Since in the pressure range in question equa- 
tion of state (1.5) for the solid phase may be linearized, in the calculations it was 
assumed that ~i = I. 

As follows from Fig. 5, the value of e with small Peff for strongly cemented rocks may 
reach the order of 102 . In contrast to weakly cemented rocks the nonlinearity parameter for 
material with K/K I ~ 1 depends weakly on water saturation. It can be seen from the calcula- 
tions that attenuation caused by interphase friction is markedly less than that observed 
by experiment for strongly cemented rocks. 
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SOLUTION OF A NONSTATIONARY PROBLEM OF ELASTICITY THEORY 

G. V. Tkachev UDC 539.3 

In this paper we present a new approach to the solution of nonstationary anti-plane 
boundary value problems of linear elasticity theory for semi-bounded regions of the type of 
a halfspace or a layer with mixed boundary conditions both on their surfaces (systems of 
stamps) and also their interiors (cracks, inclusions). Application of an additional inte- 
gral Laplace transform with respect to the time for reducing the above-named boundary value 
problems to the solution of an integral equation gives rise to certain difficulties in its 
solution in comparison with problems of stationary oscillations, methods for the solution 
of which are, at the present time, well worked-out. The majority of processes, however, 
are essentially of a nonstationary nature and cannot be reduced to problems of harmonic 
analysis. The solution, therefore, of nonstationary problems calls for urgent attention. 

According to the method we propose, using properties of the inversion of Laplace and 
Fourier convolutions of two functions, the initial boundary value problem can be reduced to 
the solution of a Volterra integral equation of the first kind for the unknown function 
itself and not its integral transform. In this connection, the Laplace and Fourier trans- 
forms are carried over with the unknown function onto the kernel, which is given by analytic 
expression in explicit form. The original of this kernel is then found by Cagniard's method 
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as modified by De Hoop [i]. Solution of the resulting integral equation is carried out by 
numerical methods based on a discretization of the time interval and an expansion of the un- 
known function on each such elementary interval on a three-dimensional basis of finite func- 
tions. We illustrate the method by solving an anti-plane nonstationary problem involving a 
stamp on the surface of an elastic halfspace. Numerical results are presented. 

In contrast to numerical methods for solving boundary value problems, our approach 
enables us to investigate not only quantitative, but also qualitative, characteristics of 
a solution. On the other hand, in contrast to the presently favored asymptotic methods for 
solving integral equations involving the Laplace-transformed unknown function and its sub- 
sequent numerical inversion, here the Laplace and Fourier inversions are obtained from the 
unknown function (appearing in the kernel of the integral equation) exactly, and not approxi- 
mately, with the aid of Cagniard's method, which, undoubtedly, increases the accuracy of the 
solution and simplifies its computational aspects. 

We consider oscillations of the surface of an elastic halfspace z 0 g 0, ]x0, Y01 < ~, 
due to short-term shear displacements of a stamp V0(x0, to), [x01 ~ a, 0 g t o g T, present 
on the surface of this halfspace. Displacements v0(x0, Y0, to) of the halfspace itself 
along the OY-axis satisfy the wave equation 

+ o~ ~'~ (Xo, zo, to) = b~ ot~ ~ (Xo, Zo, to) (1 )  

(b is the speed of transverse waves). On the surface of the halfspace we are given the mixed 
boundary conditions 

Vo(Xo, O, to) = Vo(xo, to), Zo = O, Ixol ~ a, 

o (Xo, O, to) O, z o O, I X o ] >  a, Tzy ~ 
(2) 

while infinity conditions for decrease of the amplitude of displacements are satisfied. For 
simplicity we assume zero initial conditions. 

Application of Laplace and Fourier integral transforms to Eqs. (i) and (2) with subse- 
�9 quent use of properties of the convolution of two functions makes it possible to reduce the 
initial boundary value problem to the solution, in dimensionless variables, of the integral 
equation 

]dT ~ ~(~,T)k(x--~,t--T)d~=V(x~t), I x l ~ t , t ~ 0  ( 3 )  
O - -1  

relative to the unknown contact stresses ~(~, T) under the stamp. Here V(x, t) = ~V0(x, t)/ 
a; x = x0/a; t = t0b/a; ~($, T) = ~zy~ T)/D; ~ is the shear modulus of the material com- 
prising the halfspace. 

The kernel of the integral equation (3), 

l �9 t t , e s(t-r) ds (4) 
k (x - -  ~, t - -  T) = ~ -  e -~(~-~)  da  ~ ] /a~ + s ~ 

in thiscase can be calculated with the aid of .integral transform tables [2]. For more in- 
volved functions it is necessary to apply Cagniard's method [3], the essence of which is that 
by deforming the integration contour the inverse Fourier transform is brought to the form of 
a direction Laplace transform, thereby making it pOssible to obtain directly from expression 
(4) the original of the kernel itself. As a result of Eq. (3), we arrive at the equation 

(5 )  

[ H ( y )  i s  t h e  H e a v i s i d e  f u n c t i o n ] .  

D i m e n s i o n l e s s  d i s p l a c e m e n t s  o f  i n t e r i o r  p o i n t s  o f  t h e  h a l f s p a c e  may be  e x p r e s s e d  i n  a 
s i m i l a r  way i n  t e r m s  o f  t h e  c o n t a c t  s t r e s s e s :  
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t 

v (x, z, t) = S 
o 

1 

dT y "~ (~ T) 
--1 

lt(t--T +z)H(]/'~--r)2--~2--1x--~l) d$, 
I / (t - T) 2 - z ~ - (x - ~)~ 

Ixl<oo, z <o, t> o. 

Continuation of the right-hand side of the integral equation (5) beyond the boundary of 
the region occupied by the stamp defines a wave field on the surface of the halfspace gener- 
ated by movements of the stamp. Following the picture of the wave front in the domain 
Ix[ e i, z = 0, we conclude from the analytical representation of the kernel in Eq. (5) that 
at points with coordinates x > 1 the free surface of the halfspace is in a state of quies- 
cence up to the time (dimensionless) t = x - i, following which a wave from the stamp 
arrives there. The coordinates x = t + 1 and x = -t - 1 determine the forward front of the 
wave to the right and to the left of the stamp, respectively. Similar statements can be 
made concerning the wave field inside the halfspace. 

To solve Eq. (5) we use the method of discretization with respect to the time and expand 
the unknown function ~(x, t) in a basis of finite functions. A scheme of this kind was used in [4] 

for the solution of boundary value problems by the boundary element method. Here the time 
interval of integration [0, t] is partitioned by the points tm, (m = 0, I, .... M), into 
M parts with time step At (t o = 0, ..., t M = t), and the spatial interval of integration 
[-i, i] is partitioned by the points x n (n = 0, i, .... N) into N parts with step size h 
(x o = -i, .... x N = i). Taking into account a root singularity in the stresses x(x, t) at 
the edges of the stamp [5], we expand the unknown contact stresses on each time interval 
[tm_ I, t m] in a series 

N 

�9 ~ ( x ) =  ~C~,~ ,~ ( �9  m = l ,  2 . . . . .  M (6) 

according to the following basis: 

X 1 -- 
~~ (~) = h - V ~ - i '  

~ - -  z ~ _  1 

,~n(~) = I ---'~-'r X n - - I ~ X n '  

h 
O, ~<x~_~, ~>x~+~, 

l ~ X l t  ~N(~) = ~--Xlv--1 
hV~__ ~, XN--~<~<~I,  

n = 1 , 2  . . . .  , N - - l .  

The coefficients Cm, n in Eq. (6) are different on each time interval indicated, and the 
values of <m(X) are themselves constants with respect to the time and denote values of the 
contact stresses on this time interval. 

As a result, Eq. (5) acquires the form 

N t I 

~=o ' l / ( t - - T )  - - ( x - - ~ )  
t~{_ I --I 

M--1 N tm 1 

m=l n=o tin_ 1 --I 

(7) 

where CM, n are coefficients in the expansion of the unknown contact stress at a given time 
t relative to the basis ~n(X); these coefficients can be found from an algebraic system 
obtainable from Eq. (7) by successively putting x = x n (n = 0, 1 ..... N). Obviously, for 
this it is necessary to know the coefficients Cm, n in the expansion of the contact stresses 
in the series (6) on the previous time intervals m = i, 2, ..., M - i. In the resulting 
recursion formula we have, at the first step, a very simple algebraic system 
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for the unknown CI, n. 

The coefficients of this and also of all the subsequent systems are double integrals 
of the unknown functions. Integrals of ~n(X) (n = i, 2, .... N - i) may be calculated ana- 
lytically, while those of @0(x) and ~N(X) may be reduced to elliptic integrals and handled 
numerically. Matrices of all the systems are well defined and have elements only on the 
principal diagonal and on the two diagonals closest to it. According to the estimates 
given in [4], the convergence of this method is guaranteed providing &t/h 2 ~ 0.5. 

Computer programs were written and a numerical analysis was made of the wave fields 
on the surface of the halfspace and of the contact stresses under the stamp. Two cases were 
considered: i) the stamp executes a small movement according to the law V(x, t) = 0.3t over 
the dimensionless time interval 0 ~ t ~ 0.04 and is then fixed in this displaced position; 
2) under these same conditions, after the time t = 0.04 the stamp becomes disengaged from 
the surface of the halfspace and remains free of it for all further time. 

Figures i and 2 exhibit graphs of the dimensionless contact stresses for Case 1 for 
tl = 0.04, t2 = 0.08, t 3 = 0.4, and for tl = 0.4, t= = 0.6, t3 = 0.8, t4 = i, t5 = 1.2, 
respectively. The curves are numbered to correspond to graphs of the stresses at the times 
t n. By virtue of symmetry the graphs are given only for one half of the stamp, 0 ~ x ~ i. 

In Fig. 3 graphs 1 and 2, corresponding to Cases i and 2, show the variation with time 
of the dimensionless displacement of a point of the free surface of the halfspace 0.2 units 
distant from the edge of the stamp. For t < 0.2 the forward front of the wave has as yet 
not reached the point in question. When t = 0.2 a wave from the displacement of the closest 
point of the stamp arrives at this point, and when t = 2.2 a wave arrives from the farthest 
point of the stamp. For times t sufficiently large a displacement of the point of the sur- 
face in question tends towards its displacement under a static load in Case I; in Case 2 it 
tends towards zero. 

Figure 4 presents graphs of dimensionless displacements of points of the free surface 
of the halfspace as a function of the distance x from the edge of the stamp (x = 1) for t I = 
0.4, t 2 = 0.8, t s = 1.2, t4 = 1.6, and t 5 = 2 for Case 1 (solid curve) and Case 2 (dashed 
curve). Curves numbered 1 to 5 are the graphs of displacements of points of the surface of 
the halfspace at times t n. 
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CONJUGATE PROBLEM OF AERODYNAMIC EXTRUSION OF JETS OF HEATED VISCOUS LIQUID 

V. I. Eliseev and L. A. Fleer UDC 532.526 

Aerodynamic extrusion of jets of viscous liquids is of practical value for the produc- 
tion of synthetic filaments consisting of polymer melts with the help of high-velocity gas 
flows. The problem of fiber formation is a conjugate problem, in which the mutual effect 
of the fiber formed and the surrounding medium must be taken into account. This problem was 
first formulated mathematically in [i, 2], where a model of the flow is proposed and the 
basic equations and boundary conditions are derived. In [3, 4] the most general equations 
describing the dynamics of thin jets of viscous liquid are derived taking into account the 
spatial bending and twisting, and in [4-6] the present status of the theory of hydrodynamics, 
heat transfer, and stability of fiber formation processes are analyzed in detail. In the 
case of fiber formation with the help of extrusion devices with low (up to 5 m/sec) final 
velocities of the jets, the external force exerted by the flow can be neglected [7]. As the 
velocity of the filament increases the effect of friction on the parameters of the fiber be- 
comes significant. For aerodynamic extrusion the forces of interaction of the fiber and flow 
are determining. A number of works (for example, [8, 9]), in which the characteristics of 
aerodynamic formation are studied, are devoted to some physical and technological aspects 
of this problem. In this paper we construct a complete, conjugate mathematical model of the 
flow and we perform a numerical analysis based on an iteration method [i0, ii]. 

i. Basic Equations and Boundary Conditions. Figure 1 shows a diagram of the flow of 
a jet of liquid, extruded with an air flow, parallel to the axis of the jet (i - draw hole, 
2 - jet, 3 - ejector). Because of the existence of viscous and heat-conduction effects, 
the jet of melt and the exterior medium interact with one another by means of the boundary 
layer. The mutual effect of the extruded jet and the medium makes this problem a conjugate 
problem. Let us assume that the flow of the jet of melt is stable, the jet does not bend 
and does not oscillate, and the velocity and temperature profiles in the jet are uniform. 
These assumptions make it possible to employ simple equations of motion of the liquid jet 
and heat transfer, derived, for example, in [1-3]: 

dAj p,j:Aj F dT,j 2~rjq 
dx G~ ' dx ~,~cjAj 

G = pjujAj,  F = f f r  -~ F in  ~ fg ,  q = qT ~ qrad ( 1 . 1 )  

= D exp (B/Tj + C), AjI~= 0 = Aj0, Tj lx= 0 = Tj0. 

Here  p~ i s  t h e  d e n s i t y  o f  t h e  l i q u i d ;  uj  i s  t h e  v e l o c i t y  o f  t h e  j e t ;  g i s  t h e  e m i s s i v i t y  o f  
t h e  boay ;  o i s  t h e  S t e f a n - B o l t z m a n n  c o n s t a n t ;  c j  i s  t h e  h e a t  c a p a c i t y  o f  t h e  l i q u i d ;  Aj i s  
t h e  a r e a  o f  t h e  t r a n s v e r s e  c r o s s  s e c t i o n  o f  t h e  j e t ;  Tj i s  t h e  t e m p e r a t u r e  o f  t h e  j e t ;  ~ i s  
t h e  l o n g i t u d i n a l  v i s c o s i t y  o f  t h e  p o l y m e r ;  G i s  t h e  f l o w  r a t e  o f  t h e  p o l y m e r ;  r j  i s  t h e  r a -  
d i u s  o f  t h e  j e t ;  F i s  t h e  t o t a l  a x i a l  f o r c e ,  b a l a n c i n g  t h e  r h e o l o g i c a l  f o r c e  ana  i n c l u d i n g  
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